2nd Term Worksheet [2018 – 19]

Subject - Physics Class - VIII

Name	:	Sec. :
		<u>Chapter – 4</u>
Chec	k Point:	[Energy]
[A]		er the following questions: [53]
[/ \]	1.	In physics, when is work said to be done?
	Ans.	The projects, which is work said to be done:
	AH3.	
	2.	Write the equation to calculate the work done and state its unit.
	Ans.	The second secon
	7 11 10 1	
	3.	On what factors does the work depend?
	Ans.	
	4.	A force of 20 N causes a displacement of 4 m in a body. Calculate the work done by this
		force.
	Ans.	

5.	2 phy (viii) A work of 4800J is done on a load of mass 40 kg to lift to certain height. Calculate the height through which the load is lifted.
Ans.	
6.	A boy having a mass of 50 kg runs up the mountain. The total work done by a boy is
Ans.	700J. Calculate the force exerted by him to complete the work.
	ver the following questions: [55]
1. Ans.	What is energy? State its unit.
2. Ans.	Which are the different forms of energy?
Alis.	
3. Ans.	Define kinetic energy, potential energy and gravitational potential energy.
7.113.	

	Write the equation of kinetic energy. On what factors does this energy depend?
	Name the three types of potential energies.
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
	Write the equation of gravitational potential energy. On what factors does it depend
e t	the following numerical:
e t	

[C]

A bullet form a soldier's handgun travels at 300 metres per second and has a mass of 0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mange on a tree has a gravitational potential energy of 180J and a mass of 0.36. How high from the ground is the mange placed on the tree?		
0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
0.03 kg. What is the kinetic energy of the bullet? Find the gravitational potential energy of an object that has a mass of 12.0 kg and is 4.8 m above the ground. A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How	_	
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		
A mango on a tree has a gravitational potential energy of 180J and a mass of 0.36. How		

it to have a P.E. of 435 J?	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	A container with a mass of 14.5 kg sits on the floor. How high would you need to lift it to have a P.E. of 435 J?
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
Speed of the pie? What is the mass of a football that has a kinetic energy of 100 J and is traveling at	
	A 1 kg chocopie was hit on a wall. The kinetic energy of the pie is 32 J. What was the speed of the pie?

					· · · · · · · · · · · · · · · · · · ·	
Answe	er the following quest	ions:				
1.	What is the law of co	onservation of e	nergy?			
Ans.						
2.	Explain the energy t	ransformation	in the following:			
	(a) LED		Ceiling fan	(c)	Dry cell	
Ans.						
					· · · · · · · · · · · · · · · · · · ·	
					·	
2	Differentiate between	un anargu and n			· · · · · · · · · · · · · · · · · · ·	
3. Ans.	Differentiate betwee	en energy and p	ower.			
7 101						

-	vords:			1 3 ()		[59]
Joule	9:					
Ener	gy:					
Kine	tic ener	gy:				
Pote	ntial en	e rgy :				
Grav	ritationa	ıl potei	ntial energy:			
Powe	er:					
Exer	cise:					[60-62]
[A]	Multi	ple Ch	noice Questions:			[60]
	(i)	•	k is a	quantity.		
	· · /	(a)	scalar	(b)	vector	
		(c)	both (a) and (b)	(d)	None of these	
	(ii)		gy is transformed every		of a day.	
	. ,	(a)	second	(b)	minute	
		(c)	hour	(d)	none	
	(iii)		avitational potential ene	• •	n .	
	` ,	(a)	mass of an object	(b)	height at which ob	
		(c)	both (a) and (b)	(d)	none	,
	(iv)	. ,	amount of translational variables.	` ,		s on
		(a)	one	(b)	two	
		(c)	three	(d)	four	
	(v)		gy is stored in an object	• •		Farth acting on the
	(-)	objec				
		(a)	gravitational	(b)	fictional	
		(c)	magnetic	(d)	none of these	
	(vi)		various forms of kinetic (• •		
	(*.)	(a)	vibrational	(b)	rotational	
		(c)	translational	(d)	all of these	
	(vii)		ase of kinetic energy, mo	• •		
	(*,	(a)	vertical	(b)	horizontal	
		(c)	zig - zag	(d)	both (a) and (b)	
	(viii)		energy associated with n			
	(*****)	(a)	potential energy	(b)	sound energy	
		(c)	kinetic energy	(d)	nuclear energy	
	(ix)		is a fo		rideledi erlergy	
	(17)	(a)	electric	(b)	thermal	
		(a) (b)	light	(d)	sound	
	(x)		gy is measured in	(u)	Juditu	
	(^)	(a)	kilo – watt hours	(b)	calories	
		(a) (c)	newton metres	(d)	none of these	
		(6)	LICANTOLL LLIGHT C2	(u)	110116 01 111636	

	ver the following questions:	[62]
1.	What is work according to physics and state its unit?	
Ans-		
2.	Write pate on kinetic energy	
	Write note on kinetic energy.	
Ans-		
3.	Write note of gravitational potential energy.	
Ans-		
7 (113		

	Define energy and power. State the difference between them.
-	Define energy and power. State the universitie between them.
'e t	the following numerical problems:
'e t	the following numerical problems: Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.
	Calculate kinetic energy of a body of a mass 4 kg moving with a velocity of 0.2 m/s.

[F]

_	
_	
_	
_	
_	
_	
_	
_	
_	
	low much work is done by force of 40 N in moving an object through a distance of he directions of a force?
_	
_	
_	
_	
_	
_	
_	
_	
_	
	Vhat is the kinetic energy of a 4 kg volleyball that travels a distance of 40 meters econds?
_	
_	
_	
_	
_	
_	

12 phy (viii) Chapter – 5

<u>napter – [Light]</u>

Check Point:

1.	Name any three transparent substances.	
Ans.		
AH3.		
2.	How does the light travel from air to glass?	
Ans.	Tiow does the light traver from all to glass.	
7 (113.		
3.	Give any two examples of refraction of light, which you observe in everyday life.	
Ans.		
4.	Name the colours in the order they appear in the spectrum of sunlight.	
Ans.		
_		
5.	Who discovered that light consists of seven colours?	
Ans.		
6.	Why a straight rod appears bent in water?	
Ans.		
Alis.		

Explain Newtons colours disc. Which colour will be seen when Newtons colour disc rotated with high speed.
What do you mean by refraction of light?
Does the refraction of light take place in same medium or different medium?

The object is located at C.

The object is located at ${\sf F}.$

The object is located between C and F.

(b)

(c)

(d)

(e)	16 phy (viii) The object is located in front of F.
(0)	The object is located in front of t.
Keywords:	[81]
Refraction:	
Concave mirr	or:
Convex mirro	or:
Principal axis	 S:
Pole:	
Centre of Cur	vature:
Radius of Cur	rvature:
Focus and Fo	cal point:
r code and r c	
Focal length:	
Dool in -	
Real image: Virtual image	e:
	····

Dispersion of light:

Spectrum:					
Everei	ico.				[0.204]
Exerci [A]		nlo Ch	oice Questions:		[82-84] [82-83]
[/]	(i)		image will be upright and magr	nified	[02-03]
	(1)	(a)	The object is located at F	iiiicu	
		(b)	The object is located in front	of F	
		(c)	The object is located between		
		(d)	The object is located at C.		
	(ii)		•	al in size ar	nd located at the point of centre of
	(,		ature.	a 5125 a.	a resulted at the permit of serial co.
		(a)	The object is located at F		
		(b)	The object is located in front	of F	
		(c)	The object is located between		
		(d)	The object is located at C.		
	(iii)		•	jer in size a	nd located beyond the centre of
	()		ature.	,	
		(a)	The object is located at F		
		(b)	The object is located in front	of F	
		(c)	The object is located between		
		(d)	The object is located at C.		
	(iv)		•	ıller in size	and in between centre of curvature and
		the fo	ocal point.		
		(a)	The object is located at F		
		(b)	The object is located in front	of F	
		(c)	The object is located between	C and F	
		(d)	The object is located at C.		
	(v)	Conv	ex mirror is used in		·
		(a)	headlight of vehicle	(b)	mirror of vehicle
		(c)	solar-powered gadgets	(d)	Shaving mirror
	(vi)	The _l	point at which the principal axi	s touches th	ne surface of the mirror
		(a)	principal axis	(b)	pole
		(c)	focal length	(d)	focal point
	(vii)		is the body part th	nat rally see	s the object.
		(a)	Eyes	(b)	brain
		(c)	Heart	(d)	nerves
	(viii)	Conv	ex mirrors form only	ima	ages.
		(a)	real	(b)	virtual
		(c)	both(a) and (b)	(d)	None
	(ix)		performed the exp	eriments to	show that white light consists of seven
		colou	ırs, which can be recombined to	form white	light.
		(a)	Sir Isaac Newton	(b)	Thomas Edison
		(b)	Martin Luther king	(d)	Calileo
	(x)	Whit	e light consist of	colours.	
		(a)	six	(b)	seven

(d)

nine

(c)

eight

[83]

[B]

Fill in the blanks:

	1.	When white light split	s into a band of se	even col	ours on a screen it is called a	
	2.	The image which can b	—· be obtained on a so	creen is	called a	image.
	3.	The image which cann image.	ot be obtained on	a scree	n is called a	
	4.	The splitting of white	light into its sever	n consti	tuent colours is called	
	5.	Light that falls on an o	—· object bounces off	in all d	irections. This is called	
	6.	form one transparent r	•		ch happens when a ray of ligh	it passes
	7.		_ is the result of o	dispersi	on of light by the drops of wat	er which
	8.	acts like prism.	diagram is bala	ful to k	now the size legation orients	tion and the
	Ο.	type of image that is fo			now the size, location, orienta	נוטוו מווט נוופ
	9.		-		ee a much larger area than th	e area area
	7.	covered by a plane mir		3CG 10 3	ee a mach larger area than th	c ar ca ar ca
	10.			l by a co	ncave mirror can be captured	on a
		screen.	aga .aa			0.1.4
[C]	State	whether the following s	tatements are Tru	ue or Fa	llse:	[84]
-	1.	_			he densities of different layers	
	2.	We can see an image n	not only on a plane	e surfac	e but also on a curved surface.	
	3.	The outer surface of th	ne spoon is known	as the	concave surface	_
	4.	The point on the princ	ipal axis which is	equidis	tant from all points on the ref	lecting
		surface of the mirror is	s called radius of o	curvatu	re	
	5.	If an image is not real.	. It is possible to p	roject t	he image by a convex mirror.	
	6.	Virtual image can be c	aptured on a scre	en		
	7.	The object is located be	etween C and F, w	vhen ob	ject is located at the focal poin	t.
	8.	Irrespective to where t			ge will always be located behi	nd the
	9.	Ray diagram requires	determining wher	e the ir	nage of the upper and lower e	nd of the
	10	object is placed and the	•		-	
	10.				a parallel beam of light for ex	amining
נחז	Moto	body parts such as eye				[0.4]
[D]	Matc	h the items in column I v Column I	with the correct cr	ioices ii	Column II	[84]
	1.	Convex mirror		a.	Recombination prism	
	1. 2.	Concave mirror		а. b.	no image will be formed	
	3.	Invisible energy		D. C.	Cinema screen	
	3. 4.	Spherical		d.	Our image in a plane mirro	r
	т.	opi ici icai		u.	Sai image in a plane illitto	1

19 phy (viii) 5. Prism P₁ Principal axis e. 6. Prism P₂ f. Mirror with outer curved surface 7. The object is located at F Dispersing light g. Convex and concave mirror 8. Real image h. 9. Virtual image i. Light 10. The normal to the centre of the mirror j. Mirror with inner curved surface Answer the following questions: [E] [84] Explain refraction of light. 1. Ans-2. Write a note on spherical mirror. Ans-3. What are the rules of drawing ray diagram of spherical mirror? Ans-4. What is spectrum and dispersion of light? Ans-

	5. Ans-	How real image is different from virtual image? ———————————————————————————————————	
	6. Ans-	Explain recomposition of white light.	
Ch eck		Chapter – 6 [Heat Transfer] er the following questions:	[87]
	1. Ans.	Explain the differences between boiling and evaporation.	
	2. Ans.	Define: (a) Temperature (b) Heat transfer	

	3. Ans.	How does heat transfer take place?	
[B]	Answe	r the following questions:	[88]
		What is thermal expansion?	
	Ans.		
	2. Ans.	Explain linear expansion.	
	Alis.		
	3.	What is coefficient of linear expansion?	
	Ans.		
[C]	Answe	r the following questions:	[89]
r ~ 1		What is volume expansion?	,
	Ans.		

2. Ans.	What is co efficient of volume expansion?	
D] Answe 1. Ans.	er the following questions: What is superficial expansion?	[90]
2. Ans.	Write an equation to find the new area of an object after expansion.	
3. Ans.	Differentiate between the expansion of solids, liquids and gases.	
e ywords: hermal expa	ansion:	[92]
inear expan	nsion:	

	c! ! !					
Supe	rficial e	xpansio	n:			
Exer	cise:				[93-95]	
A]	Multi	ple Cho	ice Questions:		[93-94]	
	(i)	Vapou	urisation is oftype	es.		
		(a)	one	(b)	two	
		(c)	three	(d)	four	
	(ii)	Volum	ne expansion depends on			
		(a)	Original volume of the object	(b)	temperature change	
		(c)	material of the object	(d)	all of these	
	(iii)	The _	energy of molecule	s in a su	bstance increases when a substance is	
		heate	d.			
		(a)	kinetic	(b)	potential	
		(c)	Thermal	(d)	sound	
	(iv)	In	the molecules are fa	apart a	and weakly attracted to each other.	
		(a)	solid	(b)	liquid	
		(c)	gas	(d)	plasma	
	(v)	When	a substance is he	ated, its	atoms vibrate about their fixed positions	
		(a)	solid	(b)	liquid	
		(c)	gas	(d)	all of the above	
	(vi)	Volume is counted for dimensions.				
		(a)	one	(b)	two	
		(c)	three	(d)	four	
	(vii)	Linea	r expansion coefficient is defined	as the fr	ractional change in per	
		degree	e of temperature change.			
		(a)	length	(b)	breadth	
		(c)	height	(d)	none	
	(viii)	In	the bonds between n	nolecules	s are not so strong and they are mobile	
		(a)	solid	(b)	liquid	
		(c)	gas	(d)	plasma	
	(ix)	Exter	nal source of ener	gy is red	quired for boiling	
		(a)	thermal	(b)	heat	
		(c)	sound	(d)	electrical	
	(x)	Volun	ne expansion coefficient is useful	for expa	nsion of	
		(a)	solid	(b)	liquid	
		(c)	gas	(d)	both (b) and (c)	
B]	Fill ir	the bla	anks:		[94	
	1.		expansion mea	ıns expa	nsion in the area of laminar surface due	
		to hea	iting.			
	2.	When	temperature of a substance incre	eases thr	rough heat transfer, the volume or length	
		of a m	naterial also increases. It is called		·	
	3.	In	, a substance	e change	es from liquid state to vapour when the	

24	phy	(viii)	

	builing point is affected with the	variat	ion in pressure.	
5.	When the degree of expansion is	divided	d by the change in temperature we get coeff	cient
	ofexpans	sion of	particular material.	
6.	is defined	d as th	e fractional change in length per degree of	
	temperature change.			
7.	When we increase the temperatu	re of a	, its volume expand	S.
8.	Every ha	s its o	wn average coefficient of expansion.	
9.	The volume changes in a way pro	portio	nal to the change in	<u>.</u> .
10.	The change in the length of an obcalled	ject is	related to the temperature change by a con	stant
State	whether the following statements	are Tr	ue or False:	[94
1.	The atoms in the substance do no	t expa	nd but their volume increases	
2.	When we heat any state of matter	r, it do	es not expand.	
3.	The ratio of decrease in area with	respe	ct to its original area for every increase in c	egree
	of temperature			
4.	The coefficient of superficial expa	nsion	(eta) is twice the coefficient of linear expans	on.
5.	The brass rod expands more than	the st	teel rod	
6.	The increase in the length of an o	bject i	s proportional to the original length $ imes$ incre	ase in
	the temperature			
7.	Linear expansion coefficient is us	eful fo	r expansion of gas	
3.	Evaporation occurs when the par	tial pr	essure of vapour is lesser than that of	
	equilibrium vapour pressure			
9.	Liquid on heating expands, and it	t rises	up in its level	
10.	Pure water can be used as a coola			
Match	n the items in column I with the co	rrect cl		[94
	Column I		Column II	
1.	Coefficient of volume expansion	a.	Fitted on wooden wheel	
2.	Linear expansion coefficient	b.	Used in thermostat	
3.	Poor conductor of heat	C.	γ	
1.	Good conductor of heat	d.	Measure the temperature of a substance	
5.	Gas	e.	α	
6.	Iron rim	f.	$V_0 \times t \times \beta$	
7.	Bimetallic strip	g.	original surface area (a ₁) + increase in a	ea
	Thermometer	h.	copper	
8.		i.	Volume increases more than other state	of
	New surface area		matter	
9.	New surface area Volume expansion	j.	matter glass	
9. 10.		j.		[95
8.9.10.Answ1.	Volume expansion		glass	[95

2.	Explain thermal expansion.
Ans-	
3.	Write a short note on:
(a)	Linear expansion:
(b)	Thermal expansion:
(c)	Superficial expansion:
(C)	Superficial expansion.
4.	Compare expansion in solid, liquid and gas.
Ans-	

_	
— Gi	ive few example of thermal expansion and explain them.